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Painlevd analysis and integrability of coupled non-linear 
Schrodinger equations 

R Sahadevan, K M Tamizhmani and M Lakshmanan 
Department of Physics, Bharathidasan University, Tiruchirapalli 620 023, India 

Received 9 May 1985 

Abstract. Considering a system of coupled non-linear Schrodinger ( NLS) equations, we 
discuss the integrability properties through Painlev6 (P) analysis. For the two coupled 
NLS equations, we show that there exists a pair of parametric values possessing the P 
property, for which the associated Backlund transformation (BT) and the Hirota bilinearisa- 
tion are constructed. These parametric choices are identical to those of Zakharov and 
Schulman who established the integrability in terms of ‘motion invariants’. Finally, we 
extend the P analysis to the N coupled NLS system, and identify two parametric choices 
possessing the P property, which are natural generalisations of the two coupled NLS cases. 

1. Introduction 

In recent years the singular point structural analysis, leading to the Painlevd (P) 
property advocated originally by Ablowitz et a1 (1980) for non-linear evolution 
equations, has played a key role in identifying integrable non-linear dynamical systems 
(Chang et a1 1982, Ramani et a1 1982, Tabor and Weiss 1981, Lakshmanan and 
Sahadevan 1985). The objective of the P analysis is to locate the presence of movable 
critical points (algebraic and logarithmic branch points and essential singularities) 
exhibited by the general solution in the complex time plane, and prove that the solution 
is meromorphic (or transformable to meromorphic). The concept of P property has 
been appropriately generalised by Weiss et al (1983) to test the integrability behaviour 
of non-linear partial differential equations (NPDE). The modified definition is that a 
PDE has the P property if its general solution is single-valued about the non-charac- 
teristic movable singularity manifold. In other words, if the singularity manifold is 
determined by 

44% t )  = 0 +Ax, t )  + 0 (1) 
and U = u ( x ,  t )  is a solution of the PDE, we require that 

where uo # 0, + = d(x, t ) ,  U/ = u,(x, 1 )  are analytic functions of (x, t )  in a neighbourhood 
of the manifold (1) and cy is a negative integer. The remarkable feature of the P test, 
particularly for soliton equations, is that a natural connection exists in relation to the 
Lax pairs, BT, integrability, etc, and (2). This PainlevC test has been successfully 
performed for a class of non-linear evolution equations in order to show their integrabil- 
ity (Weiss 1983, 1984a, b, Steeb er a1 1984, Gibbon and Tabor 1985, Gibbon et a1 1985). 
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In this paper, we consider a system of two coupled NLS equations defined by 

ix11= clXlxx+2~IX112Xl +2PIX2l2X1 

iX2, = C 2 X 2 X X  +2YIX212X2+2PIX112X2 

and more generally a system of N coupled equations 
N 

iXk t  = C&k.~x+2~kklXkl~Xk+~ c akilX112Xk, 
i = I  

( I f k )  

akl = a l k ,  k, 1=1,2  , . . . ,  N, (4) 

where c l ,  c2, Ck, a, P, y and (Ykl are parametric constants and subscripts denote partial 
differentiation. For the system ( 3 ) ,  Zakharov and Schulman (1982) established the 
complete integrability in terms of 'motion invariants' by using the degenerative disper- 
sion laws for the specific parametric restrictions 

f f = p = y  c1= c2 ( 5 a )  

f f = - - p = y  Cl = - c 2 .  ( 5 6 )  

Furthermore, this result can also be proved by deriving the appropriate IST formalism 
(Zakharov and Lhulman 1982 and references therein). In this paper through a 
systematic search of P properties (§ 2) of the system (3) we establish that only for the 
parametric choices given by ( 5 )  is the system free from movable critical singularity 
manifolds and thereby integrable. We also derive the corresponding Backlund transfor- 
mation and construct the Hirota (1974a, b) bilinearisation (0 3). As a consequence, 
the construction of an N-soliton solution is pointed out. Finally, considering the N 
coupled system (4), we show that the P property holds (§  4) for a certain generalisation 
of ( 5 )  for which a suitable linear eigenvalue problem is also known to exist (Zakharov 
and Manakov 1975). 

2. P analysis of two coupled NLS equations 

In order to investigate the integrability properties of the system (3), we rewrite it in 
terms of four real functions P, Q, R and S defined by x1 = P + i Q  and x2 = RSiS.  
Consequently, we have the following equations: 

- Ql = c1PXx + 2a ( P 2 +  Q 2 ) P  + 2p(  R2  + S 2 ) P  

PI = c l Q x x + 2 c u ( P 2 + Q 2 ) Q + 2 P ( R 2 + S 2 ) Q  

-S ,  = c2RXx + 2P( P 2 +  Q 2 ) R  + 2y( R2+ S 2 ) R  

R, = c 2 S x x + 2 P ( P 2 + Q 2 ) S + 2 y ( R 2 + S 2 ) S .  ( 6 d )  

As usual (Weiss er a1 1983), the P analysis consists essentially of three stages: (i) 
determination of the leading-order behaviour, (ii) identifying the resonances and (iii) 
verifying that a sufficient number of arbitrary functions exists without the introduction 
of movable critical singularity manifolds. To start with let us assume that the leading 
orders are of the form 

P== Po4" Q ir 904"~  R == R 0 4 5  S == So~$~4 (7) 
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where al, a 2 ,  a3 and a4 are integers to be determined and 4(x, t )  is the singularity 
manifold. B y  using ( 7 )  in ( 6 )  and equating the most dominant terms we obtain the 
unique choice 

a ,  = a2= (Y3 = a4= - 1  (8) 

We note that the remaining equations resulting from (6) are identical to the set ( 9 ) .  
Therefore, at this stage we conclude that two of the four functions Po, Qo ,  Ro and So 
are arbitrary without any parametric constraints. 

2.1. Resonances 

For finding the powers at which the arbitrary functions can enter into the series, we 
substitute the expressions 

P -  Po4-l+qCp-l 0 Qo9-'+ Ql4]-' 
R = Ro4-l + RI+]-' s=s04-l+s14J-' (10) 

[A2(j)I[f i l= 0 [RI = (8, Q I ,  4,  SI)'. ( 1 1 )  

into (6), and comparing the lowest-order terms we obtain a system of four linear 
algebraic equations in (6, Q,, R,, S I ) .  In matrix form it may be conveniently written as 

To have a non-trivial solution for (5,  Ql, RI, SI )  we demand that 

c , j ' + 4 a ~ ;  4CYPoQo 4pPoRo 4pPoso 
~ ~ P o Q o  clJ'+4aQ; ~ P Q o R o  4pQoso 
4PPoRo 4PQoRo c2 j '+4yRi  4YRoSo 
4Pposo 4pQoso 4yROSo c2j '+4yS; 

= O  (12 )  det A,( j )  = 

where 

j ' =  ( j 2 - 3 J ) 4 : .  

From a knowledge of the basic properties of the determinants we can easily deduce that 

4 
det A 2 ( j )  = j 2 ( j - 3 ) 2 ( j 2 - 3 j + 4 )  j2-3 j+-  ( 1 3 a )  ( C I C 2 4 f ;  

and so the resonance values are 
1/2  16 

j = - 1 , O ,  0 ,3 ,3 ,4 ,  (R :+S; ) (c ,  y -  c $ ) )  . (136)  

Obviously the resonance a t j  = -1  corresponds to the arbitrariness of +(x, t ) .  Further- 
more, for PainlevC the resonances must be non-negative integers. This requirement 
leads to the following two possibilities. 

Case 1 

and the associated resonances are 

j = - 1 , 0 , 0 , 1 , 2 , 3 , 3 , 4 .  (146)  
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Case 2 

and so (136) reduces to 

j = - 1 , 0 , 0 , 0 , 3 , 3 , 3 , 4 .  

Thus we have isolated two sets of resonances given in (14) and (15) and the parametric 
constants obey (9). 

2.2. Arbitrary functions 

For computing the arbitrary functions at the resonance values we now introduce the 
following series expansions, 

4 4 

R = Ro4-’ + Rj4J-’ s-s04-’+ 2 Sj4J-’ 
j = 1  j = 1  

into the full equations (6). We shall discuss the evaluation of arbitrary functions of 
the cases 1 and 2 separately. 

2.2.1. Case 1 .  From equation (14), we have the resonances at j = -1, 0, 0, 1, 2, 3, 3, 
4. It is obvious that the arbitrary functions Po, Qo (say), pointed out in the earlier 
discussion correspond to the resonance values 0, 0. However, further calculations 
show that none of the functions P , ,  Q1, R, or SI is arbitrary. Hence we conclude 
that the associated series solution will have a lesser number of arbitrary functions only 
and so the resulting solution does not correspond to the general solution. 

2.2.2. Case 2. Here the resonance values a r e j  = - 1,0,0,0,3,3,3,4 and the parameters 
satisfy the condition (R;+ S ; ) ( c ,  y - c2p) = 0. From the leading-order analysis we have 

, ( P i +  Q;) + p (  R:+ Si) = -cl+: @(Pi+ m+ Y(Ri+ Si) = -24: 
where the functions Po and Qo are arbitrary. Furthermore, for the P property we 
demand that the function Ro (or So) be arbitrary in addition to Po and Qo. This is 
possible only for the following two parametric restrictions, 

CY=p=y c1 = c2 (17a) 

a = - p = y  c1 = -c2 (17b) 

which are identical to ( 5 )  obtained by Zakharov and Schulman (1982). 
Proceeding further with the choice (17a), and equating the coefficients of 

(q!-2, q5-2, 4-2, 4-2 )  to zero, when (16) is used in (6), we obtain (after simplification) 

2(2aPi -  c,+f;) 4aPoQ0 4CXPoRo 4aposo 

40!PoRo 
4aPoQo 2(2aQ;-c14Z,) 4ffQoRo 

40!PoSo 4aQoSo 4ffRoSo 2(2aSi-  C l + f ; )  

4CXQoRo 2(2aRz- ~ 1 q 5 f )  ~ ~ Q o S O  4aRoSo 1 [ =[XI 

(18a) 
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where the column matrix [XI is given by 

By solving (18) for a unique solution, we find, after completing the next two stages, that 

PI = Q1 = RI =SI = O  [XI = [OI.  (19) 

Similarly by comparing the coefficients ( 4 - ' ,  4-', 4-', 4-l) in (6), we see that the 
functions P 2 ,  Q2, R2 and S2 vanish and Po, Qo, Ro and So satisfy 

Qor + ctpoxx = 0 

Poi - ~1 Qoxx = 0 

so, + c1 ROxx = 0 

Ror - ClSOXX = 0. 

(20a 1 
(206) 

(20c )  

(20d) 

On the other hand the coefficients of (4', 4', 4', 4') in (6) reduce to a single equation 

(21 )  

so that three of the four functions P 3 ,  Q3, R3 and S3 are arbitrary. In a similar way 
we easily verify that any one of the functions P4,  Q4, R4 and S4 is arbitrary, provided 

POP3 + QoQ3 + RoR3 + SOS3 = 0 

0341 +2ciP3x4x + c I P 3 4 x x  = O  (22a) 

P341-2~1Q3x4x - ~ i Q 3 4 x x  = 0 (22b) 

S34r+2clR3x4x+c1R34xx = o  (22c) 

R34f - 2 C I S 3 X 4 X  - C I S 3 4 X X  = 0 (22d) 

hold. Thus the P property is satisfied for the parametric restriction (17a). 
In an altogether analogous way we check that the two coupled NLS equations (3) 

possess the P property for the choice (17b) also, but we refrain from giving the details 
here. Finally, we verified that for each one of the parametric choices (17a) and (17b), 
the other solution branch associated with the resonance (146) (case 1) admits only a 
lesser number of arbitrary functions and is free from movable critical singularity 
manifolds. Thus equations (3) indeed possess the P property only for the Zakharov- 
Schulman choices ( 5 ) .  

3. Backlund transformations and the Hirota bilioearisation 

In order to derive the BT of the above two P cases, we truncate the series (16) up to 
a constant level term, that is, P, ,  Q,, Rj and Sj are equal to zero for j 2. Thus the 
associated BT leads. to 

P = Po4-'+ P,  

R = Ro4- l+  R I  
Q = 004-I + Qi 

s = s04-l + S I  
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where 

r=Pi+Qi+Ri+S; .  

Equation (24) can be rewritten in terms of Hirota’s bilinear operators (Hirota 1974a, b) 
in the following way: 

( -c1 D’,4 - 4 + 2d)PO+ (DQ04 + CID’,PO~)~ = 0 (25a)  

( C I D ’ , +  * 4-2ar)Qo+(DrPo4-ciD’,Qo4)4 = O  (25b) 

( -c1 D;4 * 4 + 2 4  Ro+ ( DrSo4 + c1 D’, R o 4 ) 4  = 0 (25c) 

( CI D’,4 * 4 - 2 d ) S o  + (D,R& - ~1 D;S&)4 = 0 (25d) 

where the D operators are defined by 

where /I is a constant to be determined. In particular, from equation (26a), we have 

”1 2 
a2 :( ax2 

P ~ + Q ~ + R ~ + s ~ = -  cl-iog4-- . 

Now expanding the functions 4, Po, Qo, Ro and So as power series (Hirota 1974a, b) 
and using them in (27), we can construct the N soliton solutions in the usual way. 
Furthermore, we have checked that the above Hirota bilinearisation holds good for 
the parametric choice (17b) also, except for the fact that (27) now has to be replaced 
by 

a’ ( ax2 
P’+ 0’- (R2+ S 2 )  =- c1 -log 4 
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4. P analysis of the N coupled NLS system 

In the previous sections, we discussed the P analysis of two coupled NLS equations 
and identified two specific P cases. In this section we extend the P analysis to the N 
coupled N L S  system given in (4), whose Hamiltonian is of the form 

( k + O  

For application of the P analysis to the system (4), we rewrite it as 

where 

X k  = P k  + i Q k  k = 1 , 2  , . . . ,  N.  

Now we assume that the leading orders are of the form 

P k  ",PkOl$ 'Ik Qk Q k o 4 P 2 k  k = 1,2, .  . . , N (30)  

where P l k  and P 2 k  are integers to be determined. For this, we substitute (30)  into (29)  
and equate the most singular terms to obtain 

P l k  = P 2 k  = -1 (31a)  

and 

Here also we note that the 2 N  equations resulting from (29a)  and (29b)  reduce to N 
equations (31b).  Thus we infer that N functions out of the 2 N  functions of P k o  and 
QkO are arbitrary. 

As before, carrying out the resonance analysis (see, for example, Lakshmanan and 
Sahadevan 1985), we obtain 4 N  resonance values and, computing the associated 
arbitrary functions, we find that the series type solution is free from movable critical 
singularity manifolds only for the following specific parametric restrictions: 

f f k k  = a k l  Cl = c,  (32a)  

akk = - f f k l  Cl = -c, k, 1, m = 1,2, .  . . , N, ( k  # 1) .  (32b)  

We shall briefly outline the details below for the choice (32a) ,  while the procedure is 
analogous for (326) .  

It is easy to check that the associated resonance values can be written as 

j = -1,  0, 0, . . . , ( 2 N  - 1 )  times, 3 ,3 , .  . . , ( 2 N  - 1 )  times, 4. (33a)  
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To evaluate the required ( 4 N  - 1)  arbitrary functions, we substitute 
4 

P k  P k 0 4 - ' +  P k p 4 p L - l  
@ = I  

4 

Qk Q k o 4 - l f  Q k p 4 p - l  k = l , 2 ,  . . . ,  N 
@ = I  

(336) 

in the full equations (29). Obviously the parametric constraint (32a) further reduces 
the N equations in (316) into a single equation and so ( 2 N  - 1 )  functions of p k o  and 
QkO,  k =  1 , 2 , .  . . , N, become arbitrary. Now by equating the coefficients of 
( c # - ~ ,  4 - 2 , .  . . , 4-*)  and (4 - ' ,  4- ' ,  . . . , 4 - ' )  to zero in (29), we find that P k p ,  Q k p ,  

k = 1 , 2 , .  . . , N; p = 1,  2 vanish, provided 

(34a) 

(346) 
Q k O 4 t  + 2cl p k O 4 x  + cl p k O 4 x x  = 0 

P k O 4 r  +2c1 V k 0 4 . x  - c1 Q k o 4 x x  = 0 
and 

hold respectively. Furthermore, the comparison of the coefficients (4' ,  do, .  . . , 4') 
in 2 N  equations of (29) gives rise to a single equation 

and hence ( 2 N  - 1 )  functions of P k 3  and Q k 3 ,  k = 1 , 2 , .  . . , N are arbitrary. In a similar 
manner we can easily verify that either one of the functions of P k 4  or Q k 4  is arbitrary, 
while the remaining functions are expressible in terms of the others if 4, P k 3  and Q k 3  

satisfy the following: 

Q k 3 4 r  + 2 c l p k 3 x ~ x + c l p k 3 ~ x x  = o  (37a) 
P k 3 4 r  -2c1 Q k d x  - CI Q k 3 4 x x  = 0. (376) 

Again we checked that for each one of the parametric choices (32a) and (326), 
the remaining solution branch possesses only a lesser number of arbitrary functions 
and also verified that it does not introduce any movable critical singularity manifolds 
as in the case of the two coupled NLS equations system. Thus the N coupled NLS 

equations (29) possess the P property for the parametric choices (32a) and (326) and 
so are integrable. It is also interesting to note that complete integrability has also been 
proved for the above parametric choices (32a) and (326) through the knowledge of 
linear eigenvalue problems (Zakharov and Manakov 1975) and also by deriving an 
infinite number of commutative Lie-Backlund transformations (Zhiber 1982). 

5. Discussion 

In this paper, we systematically analysed the P properties of a two coupled NLS 

equations system and showed that there exist two PainlevC cases, which are integrable. 
Also, the associated BT and their connection with Hirota bilinear formalism was 
explored, so that N soliton solutions could be constructed. Finally, we applied the P 
analysis to the N coupled NLS equations system and identified two P cases, which are 
the natural generalisations of two coupled NLS equation cases. 
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